Mechanical characterization of brain tissue in compression at dynamic strain rates.
نویسندگان
چکیده
Traumatic brain injury (TBI) occurs when local mechanical load exceeds certain tolerance levels for brain tissue. Extensive research has been done previously for brain matter experiencing compression at quasistatic loading; however, limited data is available to model TBI under dynamic impact conditions. In this research, an experimental setup was developed to perform unconfined compression tests and stress relaxation tests at strain rates ≤90/s. The brain tissue showed a stiffer response with increasing strain rates, showing that hyperelastic models are not adequate. Specifically, the compressive nominal stress at 30% strain was 8.83 ± 1.94, 12.8 ± 3.10 and 16.0 ± 1.41 kPa (mean ± SD) at strain rates of 30, 60 and 90/s, respectively. Relaxation tests were also conducted at 10%-50% strain with the average rise time of 10 ms, which can be used to derive time dependent parameters. Numerical simulations were performed using one-term Ogden model with initial shear modulus μ(o)=6.06±1.44, 9.44 ± 2.427 and 12.64 ± 1.227 kPa (mean ± SD) at strain rates of 30, 60 and 90/s, respectively. A separate set of bonded and lubricated tests were also performed under the same test conditions to estimate the friction coefficient μ, by adopting combined experimental-computational approach. The values of μ were 0.1 ± 0.03 and 0.15 ± 0.07 (mean ± SD) at 30 and 90/s strain rates, respectively, indicating that pure slip conditions cannot be achieved in unconfined compression tests even under fully lubricated test conditions. The material parameters obtained in this study will help to develop biofidelic human brain finite element models, which can subsequently be used to predict brain injuries under impact conditions.
منابع مشابه
Modeling of Compression Curves of Flexible Polyurethane Foam with Variable Density, Chemical Formulations and Strain Rates
Flexible Polyurethane (PU) foam samples with different densities and chemical formulations were tested in quasi-static stress-strain compression tests. The compression tests were performed using the Lloyd LR5K Plus instrument at fixed compression strain rate of 0.033 s-1 and samples were compressed up to 70% compression strains. All foam samples were tested in the foam rise direction and their ...
متن کاملMechanical properties of CNT reinforced nano-cellular polymeric nanocomposite foams
Mechanics of CNT-reinforced nano-cellular PMMA nanocomposites are investigated using coarse-grained molecular dynamics simulations. Firstly, static uniaxial stretching of bulk PMMA polymer is simulated and the results are compared with literature. Then, nano-cellular foams with different relative densities are constructed and subjected to static uniaxial stretching and obtained stress-strain cu...
متن کاملMechanical characterization of brain tissue in simple shear at dynamic strain rates.
During severe impact conditions, brain tissue experiences a rapid and complex deformation, which can be seen as a mixture of compression, tension and shear. Diffuse axonal injury (DAI) occurs in animals and humans when both the strains and strain rates exceed 10% and 10/s, respectively. Knowing the mechanical properties of brain tissue in shear at these strains and strain rates is thus of parti...
متن کاملDetermination of friction coefficient in unconfined compression of brain tissue.
Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approxi...
متن کاملDynamic Recrystallization under Hot Deformation of a PH Stainless Steel
Dynamic recrystallization, DRX, behaviour of a precipitation hardened, PH, stainless steel was studied in connection with microstructural developments in a compression test. The experimental results showed that the dominant mechanism of softening is DRX, but at high strain rates and low temperatures, ie, high Zener-Holman parameter, Z, work hardening and dynamic recovery, DRV, produced a pancke...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 10 شماره
صفحات -
تاریخ انتشار 2012